Correctness Enhancement as a Pervasive SE Paradigm

Ali Mili, NJIT
Third Spring Festival Workshop
Karuizawa, March 2017
Acknowledgements

• In collaboration with
 – M. Frias (Argentina),
 – J. Desharnais (CDN),
 – W. Ghardallou (TN),
 – N. Diallo (US)

• Thanks to Professor Zhenjiang Hu
 – Invitation to the Spring Festival Workshop

• Work partially supported by
 – NSF (Grant DGE 1565478)
 – Qatar Foundation (NPRP04-1109-1-174)
Overview

- Premise/ Agenda
- Relational Mathematics for Absolute Correctness
- Relational Mathematics for Relative Correctness
- Correctness Enhancement: A Pervasive Paradigm
- Implications
- Conclusion
Premise/ Agenda

Relative correctness:

• The property of a program P' to be more-correct than a program P with respect to a specification R.

• Whereas absolute correctness divides candidate programs into two classes
 – Correct, incorrect,

relative correctness ranks candidate programs on a partial ordering.
 – Maximal elements: the correct programs.
Premise/ Agenda

Correctness Enhancement:

• The process of transforming a program P to make it more-correct than it is with respect to a specification R.
 – The new version may still be incorrect.
Premise/ Agenda

Correctness Enhancement Pervades SE
- Program Construction
- Corrective Maintenance
- Software Repair
- Adaptive maintenance
- Whitebox Reuse
 - Search
 - Adaptation
- Programming for Reliability.
- Program Merger.
- Program Upgrade.
- Test Driven Programming/ Extreme Programming
Premise/ Agenda

Agenda:
• Explore the mathematics of relative correctness/correctness enhancement.
• Discuss how and to what extent relative correctness pervades software engineering.
• Contemplate implications.
Overview

- Premise/ Agenda
- **Relational Mathematics for Absolute Correctness**
- Relational Mathematics for Relative Correctness
- Correctness Enhancement: A Pervasive Paradigm
- Implications
- Conclusion
Relational Mathematics of Absolute Correctness

- **Space**: Set S,
- **Specification**: Relation R on S.
- **Program**: Function P on S, mapping initial states to final states.
- **Refinement**: $(R' \sqsupseteq R) \iff RL \cap R' \cap (R \cup R') = R'$
- Program P is (absolutely) correct with respect to specification R if and only if: P refines R.
Relational Mathematics of Absolute Correctness

Figure 1: $R' \sqsubseteq R$
Relational Mathematics of Absolute Correctness

• Refinement: Partial Ordering.

• Lattice Properties:
 – Any two specifications have a meet (greatest lower bound):
 \[(R \cap R') = RL \cap R' \cap (R \cup R')\]

 – Two specifications R and R’ have an upper bound only if they are compatible:
 \[RL \cap R'L = (R \cap R')L\]

 – The join (least upper bound) of two compatible specifications is given by the formula:
 \[(R \cup R') = \overline{RL} \cap R \cup \overline{RL} \cap R' \cup (R \cap R')\]
Relational Mathematics of Absolute Correctness

Compatibility Condition:

• R: \(x + 2 \leq x' \leq x + 6 \)
• R': \(x + 4 \leq x' \leq x + 8 \)
 - Join: \(x + 4 \leq x' \leq x + 6 \)

• R: \(x + 2 \leq x' \leq x + 6 \)
• R': \(x + 8 \leq x' \leq x + 12 \)
 - No join.

Figure 1: Lattice Operators
Relational Mathematics of Absolute Correctness

Join of two specifications R and R':
- Sum of their requirements.
- Defined only if they are compatible

Meet of two specifications R and R':
- Common requirements.

Figure 1: Lattice Operators
Relational Mathematics of Absolute Correctness

Subtracting Specifications:
- $7 - 4: \ x, \text{ s.t. } x + 4 = 7$.
- Also: $\min_x: \ x + 4 \geq 7$.

Likewise:
- If R' refines R, we define:

\[
R' \ominus R = \min_x : R \cup X \supseteq R'.
\]

\[
R' \ominus R = (R' \cap \overline{RL}) \cup (R \cap \overline{R'}) \cap \overline{R}.
\]
Relational Mathematics of Absolute Correctness

Since we have subtractions, why not distances:

- Real numbers: \(d(x, y) = \max(x, y) - \min(x, y) \).

Specifications:

\[
\delta(R, R') = (R \sqcup R') \ominus (R \cap R').
\]

- The distance is a specification, not a number.
- Satisfies All the axioms of distance.
- Enables us to compare proximity.
Relational Mathematics of Absolute Correctness

\[\delta(R, Q') \subseteq \delta(R, Q) \]
Overview

- Premise/ Agenda
- Relational Mathematics for Absolute Correctness
- Relational Mathematics for Relative Correctness
- Correctness Enhancement: A Pervasive Paradigm
- Implications
- Conclusion
Relational Mathematics for Relative Correctness
We are given:

- Specification R on space S.
- Two deterministic programs P and P'.
- Competence domain of P with respect to R: set of initial states on which P satisfies R.
 - $\text{dom}(R \cap P)$.
 - $(R \cap P)L$.
- P' (strictly) more-correct than P with respect to R:
 - Competence domain of P' (proper) superset of that of P (wrt R).
Relational Mathematics for Relative Correctness

Figure 4: \(P' \sqsupseteq_R P \), Deterministic Specifications
Relational Mathematics for Relative Correctness

Is this definition any good? How do we know?

- Relative Correctness: Reflexive, transitive, not antisymmetric.
 - Does not necessarily duplicate correct behavior.

- Culminates in Absolute Correctness.

- Logically Implies Reliability

- Pointwise Refinement

\[P' \sqsupseteq R \Rightarrow (\forall P, P' \sqsupseteq_R P). \]

\[P' \sqsupseteq_R P \Rightarrow (\forall \theta : \rho^\theta_R(P') \geq \rho^\theta_R(P)). \]

\[P' \sqsupseteq P \Leftrightarrow (\forall R : P' \sqsupseteq_R P). \]
Relational Mathematics for Relative Correctness

\[P' \supseteq P \]

\[\forall \theta \]

\[\forall R \]

\[\int_{\text{dom}(P' \cap P')} \theta(s) \, ds \geq \int_{\text{dom}(P)} \theta(s) \, ds \]

\[\rho_h^\theta(P') \geq \rho_h^\theta(P) \]

\[P' \supseteq_r P \]

\[\forall R \]

\[\forall \theta \]
Relational Mathematics for Relative Correctness

\[R = \{(s, s') | s^2 \leq s' \leq s^3\} \]

p0: {abort}. \(P_0 = \phi. \) \(CD_0 = \emptyset. \)

p1: {s=0;}. \(P_1 = \{(s, s') | s' = 0\}. \) \(CD_1 = \{0\}. \)

p2: {s=1;}. \(P_2 = \{(s, s') | s' = 1\}. \) \(CD_2 = \{1\}. \)

p3: {s=2*s**3-8;}. \(P_3 = \{(s, s') | s' = 2s^3 - 8\}. \) \(CD_3 = \{2\}. \)

p4: {skip;}. \(P_4 = I. \) \(CD_4 = \{0, 1\}. \)

p5: {s=2*s**3-3*s**2+2;}. \(P_5 = \{(s, s') | s' = 2s^3 - 3s^2 + 2\}. \) \(CD_5 = \{1, 2\}. \)

p6: {s=s**4-5*s;}. \(P_6 = \{(s, s') | s' = s^4 - 5s\}. \) \(CD_6 = \{0, 2\}. \)

p7: {s=s**2;}. \(P_7 = \{(s, s') | s' = s^2\}. \) \(CD_7 = S. \)

p8: {s=s**3;}. \(P_8 = \{(s, s') | s' = s^3\}. \) \(CD_8 = S. \)

p9: {s=(s**2+s**3)/2;}. \(P_9 = \{(s, s') | s' = \frac{s^2 + s^3}{2}\}. \) \(CD_9 = S. \)
Relational Mathematics for Relative Correctness

Whereas absolute correctness divides candidate programs into two categories, relative correctness defines a richer partial ordering whose maximal elements are absolutely correct.
Relational Mathematics for Relative Correctness

Relative Correctness of Non Deterministic Programs

- What is a Non Deterministic Program?
- Why do we need to model such programs?

\[R = \{(s, s') | a[f'] = x \land 1 \leq f' \leq N \land (\forall h : f' < h \leq N : a[h] \neq x)\}. \]

- Place in \(f \) the largest index where \(x \) is located in \(a \) (\(x \) is known to be in \(a \)).
Relational Mathematics for Relative Correctness

- **Program** P:

  ```
  int k; int z; z=1; k=1;
  while (k<=N)
      {if ((a[k]==x) && (z>0))
          {f=k; z=mysteryfunction(z);}
          k=k+1; }
  ```

- **We want to reason about this program without having to analyze function mysteryfunction().**

 $$P = \{(s, s')| a[f'] = x \land 1 \leq f' \leq N \land a' = a \land x' = x\}.$$
Relative Correctness for (possibly) Non Deterministic Programs:

- P' is more-correct than P with respect to R iff:

\[
(R \cap P')_L \supseteq (R \cap P)_L \land (R \cap P)_L \cap \overline{R} \cap P' \subseteq P
\]

- P' has a larger competence domain, and on the competence domain of P, whenever P' violates R, so does P.
- P' obeys R more often and violates R less egregiously (in fewer ways) than does P.

Relational Mathematics for Relative Correctness
Relational Mathematics for Relative Correctness

Graphic Representation:

Figure 8: $P' \sqsupseteq_R P$, Non-deterministic Specifications
Relational Mathematics for Relative Correctness

P: int k; int z; z=1; k=1;
 while (k<=N)
 {if ((a[k]==x) && (z>0)) {f=k; z=mysteryfunction(z);}
 k=k+1;}

P': int k; int z; z=1; k=1;
 while (a[k]!=x) {k=k+1;} f=k; k=k+1;
 while (k<=N)
 {if ((a[k]==x) && (z>0)) {f=k; z=mysteryfunction(z);}
 k=k+1;}

P": int k; int z; z=1; k=1;
 while (k<=N)
 {if ((a[k]==x) && (z+5>0)) {f=k; z=mysteryfunction(z);}
 k=k+1;}
Relational Mathematics for Relative Correctness

Illustration:
- \(P' \) is more-correct than \(P \) with respect to specification \(R \): It generates one fewer incorrect output:
 - If \(x \) occurs in \(n \) locations in \(a \), say \(f_1 \ldots f_n \), then \(P \) may return any of these, including the first \(n-1 \), which are all incorrect.
 - Whereas \(P' \) may only return \(f_2 \) to \(f_n-1 \); hence it violates \(R \) in fewer ways.
- \(P'' \) is more reliable than \(P \) with respect to any probability density over \(\text{dom}(R) \), but it not more-correct than \(P \) with respect to \(R \).
 - Page 21 applies for deterministic programs, not for non-deterministic programs.
 - Reliability: a stochastic attribute; deals with plausibility.
 - Relative correctness: a logical attribute; deals with possibility.
Relative Correctness Operator: The Projection.

■ Given a Specification R,

\[R = \{ (s, s') | x' = x + y \} \]

■ A Program P,

\[\{ \text{while } (y! = 0) \{ x=x+1; y=y-1; \} \} \]

■ Program Function:

\[P = \{ (s, s') | y \geq 0 \land x' = x + y \land y' = 0 \} \]

■ What functionality of P is mandated by R?
Relational Mathematics for Relative Correctness

Relative Correctness Operator: The Projection.

- Given a Specification R,
 \[R = \{(s, s') | x' = x + y\} \]

- A Program P,
 \[\text{while } (y! = 0) \{ x=x+1; \ y=y-1; \} \]

- Program Function:
 \[P = \{(s, s') | y \geq 0 \land x' = x + y \land y' = 0\} \]

- What functionality of P is mandated by R?
 \[\Pi_R(P) = \{(s, s') | y \geq 0 \land x' = x + y\} \]
Relational Mathematics for Relative Correctness

\[R \]
\[\phi_R(P) \]
\[\Pi_R(P) \]
\[\xi_R(P) \]
\[P \]
Relational Mathematics for Relative Correctness

- **Projection of P over R**: What R mandates and P delivers.
 \[\Pi_R(P) = (R \cap P) \setminus (R \cup P). \]

- **Functional Deficit of P wrt R**: What R mandates but P fails to deliver:
 \[\phi_R(P) = R \cup \Pi_R(P). \]

- **Functional Excess of P wrt R**: What P delivers but R does not require:
 \[\xi_R(P) = P \cup \Pi_R(P). \]
Relational Mathematics for Relative Correctness

\[R = \{(s, s') | x' = x + y\}\]

\[P = \{(s, s') | y \geq 0 \land x' = x + y \land y' = 0\}\]

- **Projection of \(P \) over \(R \):** What \(R \) mandates and \(P \) delivers.
 \[\Pi_R(P) = \{(s, s') | y \geq 0 \land x' = x + y\}. \]

- **Functional Deficit of \(P \) wrt \(R \):** What \(R \) mandates but \(P \) fails to deliver:
 \[\phi_R(P) = \{(s, s') | y < 0 \land x' = x + y\}. \]

- **Functional Excess of \(P \) wrt \(R \):** What \(P \) delivers but \(R \) does not require:
 \[\xi_R(P) \approx \{(s, s') | y \geq 0 \land y' = 0\}. \]
Relational Mathematics for Relative Correctness

- Program P: Join of Projection (which R mandates) and Excess (which R does not mandate).

$$P \subseteq \Pi_R(P) \sqcup \xi_R(P).$$

Alternatively: what is determined by the specification vs what is determined by the design.

- Specification R: Join of Projection (what P delivers) and Deficit (which P fails to deliver).

$$R \subseteq \Pi_R(P) \sqcup \phi_R(P).$$
Relational Mathematics for Relative Correctness

Properties of the Projection (SCP 2017)

- Idempotence: Projection of the Projection is the Projection.
- All equally correct programs have the same projection.
- The projection is the least refined program in its class.
- P' is more correct than P with respect to R if and only if: The projection of P' over R refines that of P over R.
 - Redefine relative correctness.
 - Analogy: Better horseboating arrangement.
 - For P, P' deterministic: P' is more-correct than P with respect to R if and only if P' refines the projection of P over R.
- P is correct with respect to R if and only if the projection of P over R equals R.
Relational Mathematics for Relative Correctness
Overview

• Premise/ Agenda
• Relational Mathematics for Absolute Correctness
• Relational Mathematics for Relative Correctness
• Correctness Enhancement: A Pervasive Paradigm
• Implications
• Conclusion
Correctness Enhancement: A Pervasive Paradigm

Program Construction: Mapping a specification into an artifact that has two attributes:

- It is correct,
- It is executable.

Stepwise Iterative Process:

- Maintain correctness, enhance executability.
 - Gold standard of program construction.
- Maintain executability, enhance correctness.
 - Refinement 2015 (Oslo).
Correctness Enhancement: A Pervasive Paradigm

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Refinement Based</th>
<th>Based on Relative Correctness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization</td>
<td>$a = R$</td>
<td>$a = \text{abort}$</td>
</tr>
<tr>
<td>Invariant Assertion</td>
<td>a is correct</td>
<td>a is a program</td>
</tr>
<tr>
<td>Variant Function</td>
<td>a increasingly concrete (program-like)</td>
<td>a increasingly correct</td>
</tr>
</tbody>
</table>
| Stepwise Validity Test | Refinement:
$P' \sqsubseteq P$ | Rel. Correctness:
$P' \sqsubseteq_R P$ |
| Exit test | when a is a program | when a is correct |
Correctness Enhancement: A Pervasive Paradigm

Correctness Preserving vs. Correctness Enhancing Transformations
Correctness Enhancement: A Pervasive Paradigm

Question: Which is better?

- Fortunately, it does not matter.
 - Foolishness: challenging 40 years of programming wisdom.
- We argue for correctness enhancement
 - Not because it is better than correctness preservation at program derivation.
 - But rather: Unlike correctness preservation, correctness enhancement models not only program derivation, but many other processes of software engineering.
Correctness Enhancement: A Pervasive Paradigm

Corrective Maintenance

- Removing Faults (RAMICS 2014, 2015):
 - What is a fault? What is a Fault Removal?
Correctness Enhancement: A Pervasive Paradigm

Corrective Maintenance

- Removing Faults (RAMICS 2014, 2015):
 - What is a fault? What is a Fault Removal?
 - Fault: a feature \(f \) in a program \(P \) that admits a substitute \(f' \) that would make the program more-correct with respect to \(R \).
 - Fault Removal: The pair \((f, f') \).
Correctness Enhancement: A Pervasive Paradigm

Implications of this definition:

- The difference between program faults and bad apples.
 - If we have N bad apples and we remove one, we are left with $N-1$.
 - But if we have N faults and we remove one, the number of remaining faults is indetermined.
- Measuring Faultiness: \textit{Fault depth}.
 - Number of (elementary) Fault Removals to a correct program.
Correctness Enhancement: A Pervasive Paradigm

Implications of this definition:

- Debugging Without Testing (ICST 2016, Chicago).
 - Four steps in debugging:
 1. Evidence of existence of a Fault.
 2. Localization of the Fault.
 3. Indication on how to fix the Fault.
 4. Evidence of fault removal.
 - All without testing; rather by static analysis.
Correctness Enhancement: A Pervasive Paradigm

Program Repair (formaliSE 2017, Buenos Aires)

- Much work on program repair, since about 2010.
- Many tools available online.
- Yet: No definition of relative correctness.
 - Correctness \rightarrow Program Construction.
 - Relative Correctness \rightarrow Program Repair.
Correctness Enhancement: A Pervasive Paradigm

Absence of Relative Correctness \rightarrow Approximations stemming from absolute correctness.

- Sufficient (unnecessary) conditions of correctness
 - \rightarrow Loss of recall.

- Necessary (non-sufficient) conditions of correctness
 - \rightarrow Loss of precision.

- Failure to recognize scale of elementary fault:
 - Failure to distinguish between single two-site fault and two single-site faults.
 - Unwarranted Combinatorial explosion.

- Failure to recognize stepwise Improvements in RC
 - Let the Program Expose its Faults in the order it chooses.
Correctness Enhancement: A Pervasive Paradigm

Algorithm for Program Repair:

- Inputs: Program P, specification $R(s,s')$, predicate $domR(s)$, test data T.
- Output: Program P', absolutely correct with respect to $T \setminus R$.
 - More-correct than P with respect to R.

Loop:

\[\{ P' = P; \text{ while not abs cor}(P') \{ P' = \text{enhance-correctness}(P); \} \} \]

Precise Oracles using $R()$ and $domR()$ for:

- Absolute Correctness.
- Relative Correctness.
- Strict Relative Correctness.
Correctness Enhancer: A Pervasive Paradigm

- Six modifications (not faults)
 - Only one fault is visible.
 - Faults mask each other.
 - Fault Density = 1.
 - Fault depth = 5.
- Depth decreases by 1:
 - $\text{depth}(P') = \text{depth}(P) - 1$.
- Density does not:
 - $\text{density}(P) = 1$.
 - $\text{density}(M79) = 3$.
Correctness Enhancement: A Pervasive Paradigm

Program Merger

- Specification R,
- Two programs, $P1$ and $P2$.
 - Both incorrect,
 - Each covering part of R’s requirements,
 - Merger: P' that merges the relevant functionality of $P1$ and $P2$.
Correctness Enhancement: A Pervasive Paradigm

Requirements on P':

- P' refines P_1 and refines P_2? No, for two reasons:
 - Refining P_1 and P_2 may be impossible.
 - Incompatibility between functional excesses.
 - Refining P_1 and P_2 is unnecessary.
 - Sufficient: P' more correct than P_1 and P_2.
 - Equivalent: P' refines projections of P_1 and P_2.
 - Good news: projections are compatible, admit a join.
Correctness Enhancement: A Pervasive Paradigm

(a) Merger of P_1 and P_2
Correctness Enhancement: A Pervasive Paradigm

Program Upgrade

- Specification R,
- Sprawling Application P.
 - E.g. Enterprise DP application
- New requirement Q.
 - New functionality we want to add to P.
 - E.g. New input screen, new report, new function to compute.
Correctness Enhancement: A Pervasive Paradigm

Requirement on P' to be an upgrade of P with Q?

- P' must refine P and Q.
 - Not necessary; and may be impossible.
 - Q incompatible with functional excess of P.
- P' must refine R and Q.
 - No assurance that P refines R; why expect P'?
- P' must refine Q and be more-correct than P with respect to R.
 - In other words, satisfy Q without degrading P.
 - Possible if Q and projection of P are compatible.
Correctness Enhancement: A Pervasive Paradigm

(b)
Upgrading P_1 with Feature Q
Overview

• Premise/ Agenda
• Relational Mathematics for Absolute Correctness
• Relational Mathematics for Relative Correctness
• Correctness Enhancement: A Pervasive Paradigm
• Implications
• Conclusion
Implications

- Sound scientific basis for engineering
- Explicit criteria for successful completion.
- Modeling heretofore informal/vague processes.
- Efficient/goal-oriented tasks.
- Defining Faults
 - Debugging without testing.
 - Fault Density vs Fault Depth.
 - Program Repair under combinatorial control.
 - Removing Faults at $7.99 a piece or less.
Overview

• Premise/ Agenda
• Relational Mathematics for Absolute Correctness
• Relational Mathematics for Relative Correctness
• Correctness Enhancement: A Pervasive Paradigm
• Implications
• Conclusion
Conclusion

(a) Programming for Correctness

(b) Programming for Reliability

(c) Adaptive Maintenance

(d) Corrective Maintenance
Conclusion

(a) Program Merger

(b) Program Upgrade
Conclusion

Observation

- Mr Jourdain: Surprised to find that he has been saying prose for 40 years and did not know it.
- Software engineers entitled to an even bigger surprise: we have been practicing correctness enhancement for 50 years and many (perhaps most?) of us did not know it.

In order for this discovery to do us any good, we must:
- Expand our understanding of relative correctness/ correctness enhancement.
- Expand our understanding of how and to what extent it pervades software engineering.
- Consider how this may be used to improve software engineering practice.
Conclusion

Research Agenda

- From verifying relative correctness to generating more-correct-by-design artifacts
 - As was done in the eighties and nineties for absolute correctness (Hoare, Dijkstra, Gries, Hehner, Morgan).
 - Significant hurdle: relative correctness is context-sensitive.
 - Scaling specifications down to artifacts.
 - Significant payoff: commensurate with pervasiveness.
Conclusion

Research Agenda

- From verifying relative correctness to generating more-correct-by-design artifacts
 - As was done in the eighties and nineties for absolute correctness (Hoare, Dijkstra, Gries, Hehner, Morgan).
 - Significant hurdle: relative correctness is context-sensitive.
 - Scaling specifications down to artifacts.
 - Significant payoff: commensurate with pervasiveness.

- Other Forms of Refinement.
Overview

• Premise/ Agenda
• Relational Mathematics for Absolute Correctness
• Relational Mathematics for Relative Correctness
• Correctness Enhancement: A Pervasive Paradigm
• Implications
• Conclusion